Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE).

نویسندگان

  • Jean Claude Kamgang
  • Gauthier Sallet
چکیده

One goal of this paper is to give an algorithm for computing a threshold condition for epidemiological systems arising from compartmental deterministic modeling. We calculate a threshold condition T(0) of the parameters of the system such that if T(0)<1 the disease-free equilibrium (DFE) is locally asymptotically stable (LAS), and if T(0)>1, the DFE is unstable. The second objective, by adding some reasonable assumptions, is to give, depending on the model, necessary and sufficient conditions for global asymptotic stability (GAS) of the DFE. In many cases, we can prove that a necessary and sufficient condition for the global asymptotic stability of the DFE is R(0)< or =1, where R(0) is the basic reproduction number [O. Diekmann, J.A. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000]. To illustrate our results, we apply our techniques to examples taken from the literature. In these examples we improve the results already obtained for the GAS of the DFE. We show that our algorithm is relevant for high dimensional epidemiological models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE STABILITY AND THRESHOLD ANALYSIS OF AN EPIDEMIC MODEL

We consider a mathematical model of epidemic spread  in which the  population  is partitioned  into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). We assume each of the compartments comprises of cohorts of individuals which are  identical with respect to the disease status. We derive five systems of equations to represent each of the ...

متن کامل

Influence of awareness programs by media in the typhoid fever: a study based on mathematical modeling

In this paper, we propose and analyze a mathematical model describing the effect of awareness programs by public media on the prevalence of Typhoid fever. A threshold quantity $R_{0}$, similar to the basic reproduction number is derived. We investigate the biologically meaningful equilibrium points and their local stability analysis. The global stability analysis has been performed with respect...

متن کامل

Center manifold analysis and Hopf bifurcation of within-host virus model

A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there ex...

متن کامل

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Dynamically consistent nonstandard finite difference schemes for epidemiological models

This work is the numerical analysis and computational companion of the paper by Kamgang and Sallet (Math. Biosc. 213 (2008), pp. 1–12) where threshold conditions for epidemiological models and the global stability of the disease-free equilibrium (DFE) are studied. We establish a discrete counterpart of the main continuous result that guarantees the global asymptotic stability (GAS) of the DFE f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 213 1  شماره 

صفحات  -

تاریخ انتشار 2008